
AU/ACSC/0158/97-03

INTERNET WARGAMING WITH

DISTRIBUTED PROCESSING USING THE CLIENT-SERVER

MODEL

A Research Paper

Presented To

The Research Department

Air Command and Staff College

In Partial Fulfillment of the Graduation Requirements of ACSC

by

Maj. Gregory L. Tarr, Ph.D.

March 1997

Report Documentation Page

Report Date
01MAR1997

Report Type
N/A

Dates Covered (from... to)
-

Title and Subtitle
Internet Wargaming with Distributed Processing Using
the Client-Server Model

Contract Number

Grant Number

Program Element Number

Author(s)
Tarr, Gregory L.

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Air Command and Staff College Maxwell AFB, Al
36112

Performing Organization Report Number

Sponsoring/Monitoring Agency Name(s) and
Address(es)

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
45

ii

Disclaimer

The views expressed in this academic research paper are those of the author and do

not reflect the official policy or position of the US government or the Department of

Defense.

iii

Contents

Page

DISCLAIMER .. ii

LIST OF ILLUSTRATIONS...v

LIST OF TABLES ... vi

PREFACE... vii

ABSTRACT...viii

INTRODUCTION...1
Approach..2
Overview..2

METHODS AND TOOLS...5
What is the Client-Server Model?..7
Common Gateway Interface (CGI)..8
Client Side Processing...10

Client-Pull..10
Client-side Programming...11
Client Side Scripts...13
A Note About ActiveX and VBScript..16
Client Side Programming Using Virtual Machines...16
Direct Access Programming: Plug-Ins and Helpers..18
Server Side Programming Environment...19

IMPLEMENTING GAME FUNCTIONS..24
Registration...24
Client Interaction..27
Synchronization..28
Adjudication..29
Graphic Display...30
Distribution of AFEX Processes..32

CONCLUSIONS...34
Recommendations...34

iv

BIBLIOGRAPHY ...36

v

Illustrations

Page

Figure 1. The Client Server Model..7

Figure 2. Syntax for the Frame Document...15

Figure 3. Intelligence Report..30

vi

Tables

Page

Table 1. Comparison of Software Approaches...22

Table 2. Distribution of Processes..32

vii

Preface

Recent technological developments involving the Internet are changing the way we

use computers. Modern computers are becoming more of a communication device than a

computing engine. This trend will prove to be as great a change as the invention of the

telegraph. The purpose of this paper is to examine the tradeoffs in software and hardware

selection for complex modeling and simulation projects. This project will demonstrate

Internet communication software can be used to relay not only information but situation

awareness.

viii

AU/ACSC/0158/97-03

Abstract

The development of a multi-player wargame, accessible on the Internet, is presented.

This paper discusses how the client-server model of the World Wide Web (WWW) can be

used to implement the five functions of an interactive game. These five functions are

registration, interaction, synchronization, adjudication, and graphic display. The

techniques used to implement these functions include client-side scripting, server-side

computation using the Common Gateway Interface (CGI), and graphical user interface

design using the Hyper Text Markup Language (HTML).

The strengths, weaknesses and applicability of the client-server techniques are

examined within the context of the game functions. Critical to this analysis is the current

state of the software available for implementing the chosen client-server methods.

Browser software and the available computer language programming environments are

examined for portability, utility and end-user acceptability.

Based on this analysis, the Air Force Employment Exercise (AFEX) was “ported” to

the Internet. The engineering solution is chronicled here. The WWW changed dramatically

over the course of this project and several recommendations for future work are presented

to capitalize on these changes.

1

Chapter 1

Introduction

This report will try to answer a single question. Can you design, with limited

development resources, a computer war game exercise that keeps all players fully

engaged? The constraints are simple as well. Each player should be able to interact with

the game using their own computer keyboard without waiting for other people to take

their turn or to pass a computer keyboard between players. The player should

conceivably be able to be physically separated by rooms, using an Intranet or by continents

using the Internet.

Although the problem has been solved by a number of software development

companies using direct client-to-client socket programming, their approach is too

demanding and time consuming for casual programmers. This report presents an approach

suitable for the computer-literate subject area expert who wishes to create an exercise

with minimal development time and resources. The solution is presented in the form of a

set of computer modules written in JavaScript and C++, with an analysis of alternative

methods and tools. The code presented in the Appendix converts the Air Force

Employment Exercise (AFEX) from a two-player, shared single computer, turn-based

game into an asynchronous, multi-player game suitable for distance learning courses.

2

Approach

The design approach is based on the client-server model developed by Tim Berners-

Lee at the Computer Emergency Response Network (CERN) in Switzerland in 19911.

This report develops a design method based on the communications capabilities and

display properties of WWW browsers and servers. This research focuses on means to

utilize computer client-server techniques for classroom exercises, as opposed to the

current approach of using a single computer for turned-based play. The final product is a

template for the development of a new generation of educational war games.

The thrust of this research is to build multi-user war games from what is essentially

document display software. With this in mind, the next questions are: What software tools

are available? How can they be used? What are the advantages of one approach over

another? What are the disadvantages of a particular design approach? This report tries to

answer these questions. The next section details how this report analyzes the multiple

solutions available and the criteria used to determine their relative merit.

Overview

The next chapter discusses the methods and tools used for building war games on the

WWW. The examination begins with the WWW client-server model and the techniques it

makes available for distributing the game’s computational load. Of particular interest is the

emerging area of client-side processing. Client-side techniques rely upon extensions of the

basic WWW standards that enable one to run scripts or fully self-contained programs on

the browser. The client-side extensions are complemented with server-side programming

using the more traditional common gateway interface (CGI). Both methods require

3

programming. The next chapter concludes by looking at the available languages and

programming environments for both the client and the server. The available programming

languages and development tools will be judged based on complexity of use, cross-

platform portability, security, and utility for implementing specific game functions.

The third chapter discusses how AFEX implements the five functions required of an

Internet war game. Specific client-server methods, discussed more generally in the

previous chapter, will be identified for each game function. The methods must work

together harmoniously to achieve smooth game play. Just as importantly, the techniques

must be implemented with the tools chosen. As technology advances though, the tools

change.

In the conclusion, the rapidly changing technical environment is documented and I

discuss how improvements in HTML will affect future programming projects.

The problems discussed in this project are the same problems encountered in

developing tools for computer aided war preparation. War games have been used

throughout history to pre-fight battles. Technology advances may cause computer war-

gaming to be distinguishable from computer execution of war only in the fact that one

involves blood and the other doesn’t. The future of war planning, preparation, and

execution depends on the same computer communications issues presented here. The

objective of this research is to provide a method for war game exercise development

which allows operations training to mimic operations execution. As taken from the joint

doctrine, we must train the way we fight, and fight the way we train.2

Notes

1 History of the Internet at http://www.pbs.org/internet/history.

4

Notes

2 Global Engagement: A Vision for the 21st Century Air Force.

5

Chapter 2

Methods and Tools

The client-server model is the foundation for document retrieval on the WWW. The

WWW started out as a platform independent method for retrieval of archived image and

text documents from centralized servers for display on local machines, called clients. Over

time, this paradigm has grown to allow the retrieval of customized documents, generated

in real time, and even complete, platform independent applications that allow full user

interactivity on the client machine. These developments have spawned a full network

programming environment.

This environment has become a standard for solving problems of automated

processing of client computer requests for interaction with server systems over the

Internet. It provides the Air Force Personnel Center the ability to accept volunteers for

positions over the Internet1. It also allows tailored requests for classified information to be

passed from one military installation to another using the Global Command and Control

System. Client-server processing is used to automatically generate customized price

quotations by Internet businesses. These wonderful advances in the application of the

WWW client-server model have not come without some growing pains.

These pains currently manifest themselves in security and portability concerns. The

need for security precautions has placed a number of limitations on the environment, to

6

the point where it excludes some very promising approaches for use in this project.

Ironically, one of the primary motivations for developing the WWW client-server model

was to implement a set of platform independent standards that would allow all operating

systems to participate equally. The rush to enhance the capabilities of the basic WWW

standards has opened a Pandora’s Box of proliferating non-compatible extensions that

threaten to sacrifice the original noble intentions for the sake of marketshare. One goal for

this project was to find the common ground in the current programming environments and

develop a solution that would work on all platforms. While both of these pains are

somewhat under the control of the web community, there is a third growing pain that is a

result of the WWW’s initial design.

One of the original design features of the Web’s client-server model was that it was

stateless. This means the client-server model has no memory. When making its next

request, the client must specify it fully because the server remembers nothing of any

previous interaction. Likewise, within the context of the basic client-server model, when

the client receives a new document, the previous one is flushed and forgotten and not

allowed to affect the new one. This lack of state is a fundamental problem for war games

which are a series of turns, each building upon the results of previous moves. This report

will discuss techniques for overcoming this weakness.

In order to examine specific techniques for implementing war games, we will present

a discussion of the client-server model, which is the technical foundation of the WWW.

This requires a functional analysis of the client’s browser software, the request server’s

software, the protocols that link them, and the emerging options for distribution of the

computing load between the two. This leads to an examination of the software

7

development environments currently available, which will be scored based on security,

complexity, portability, and utility for solving required war game functions. First, let’s

examine the basic WWW environment.

What is the Client-Server Model?

The client-server model is another name for the software and communications

protocols behind the WWW. Before exploring the various embellishments and extensions

to the model, let’s look at a typical web exchange.

WWW Server
Computer

Browser
(Client)
Computer

Internet

HTTP Request

Server Response

Other
Clients

Figure 1. The Client Server Model

A user on the client machine uses his browser software to make a request for a

document. The browser sends the request to the server using the hypertext transport

protocol (HTTP), now at version 1.0. The server machine, running software called an

HTTP server, processes the request and returns the document using the HTTP. The

document itself is in hypertext markup language (HTML), currently at version 3.2. At the

client, the browser renders the HTML document for display to the user. The client-server

model consists then of browser software, sever software and the standard languages and

protocols that link them.

The model achieves its platform independence through the use of standard protocols

and languages. The browser software and server software are, by necessity, platform

8

dependent since they run on a particular computer. Virtually all browsers and servers are

compliant with the HTTP 1.0. Compliance with the HTML standard is an issue for the

browser. Currently there are two browsers that are largely compliant with HTML 3.2.

They are Microsoft’s Internet Explorer (IE) and Netscape’s Navigator (Netscape). With

the basics covered by the standards, lets introduce another standard that represents the

first embellishment of the client-server model.

Common Gateway Interface (CGI)

The CGI is a specification, currently at version 1.1, that allows a client to request a

customized document of the server. To accomplish this, there needs to be three functions

added to the basic client-server model.

The first function is for a means for the user to specify what customization options

are desired. This is accomplished using FORMs2, a feature of the HTML since version

2.0. FORMs allow the user to input text, make one-of-many selections or even multiple

selections from a list of options. Now, the customized request needs to get to the server.

The CGI provides the mechanism for sending the special request data to the server by

extending the HTTP with a couple of specialized messages, more properly referred to as

headers. These headers are triggered by the value of the METHOD attribute of the FORM

tag in the client’s document. The most common values are GET and POST with the POST

method being the more preferred practice. The data is sent when the user clicks the

FORM’s SUBMIT button. With the data on its way, the server must have a mechanism to

respond appropriately.

9

To respond to a FORM request, the CGI establishes a way for a program to run on

the server machine. The HTTP server passes the data from the POST or GET header to a

separate program on the server machine, called a server-side program. This program acts

upon the request data and provides an appropriate response as output. The HTTP server

receives the program’s output and forwards it to the client. Since the browser on the client

machine understands HTML, it becomes apparent that the usual output of a server-side

program is an HTML document.

The CGI process of returning a file requires a step not covered to this point. The first

line of a server-side program’s output must specify the output’s MIME type so the

browser knows how to render the file. On a standard document request, this step is done

for you by the HTTP server. For HTML output, the MIME type is text/html. For a GIF

file it is image/gif. For a Microsoft Word document it is application/x-msword.

Shockwave, Acrobat, etc. have their own MIME types defined that allow the client

browser to recognize the data type that is coming.

The server-side output could be a static document or one generated on-the-fly. If the

client only had a limited number of choices with regard to requesting a customized

document, the server-side program merely needs to select which of several static

documents to return. On the other hand, if there are a multitude of possibilities, such as

might exist after several moves in a war game, it is more efficient to compute a response

and return it in real time. The client, browser, and user can’t tell the difference, and they

probably don’t care as long as the request was properly served.

This service, as previously suggested, could be the adjudication step for a war game.

In a turn-based war game like AFEX, adjudication requires the collection of inputs from

10

multiple clients and the results are computed only after everyone makes their move.

Server-side programs can accommodate this requirement by creating temporary files on

the server that store the various client’s moves until they are all collected. In a similar

fashion, the registration process can be done by the CGI. The server maintains a waiting

list of players, looking for partners. When a new player arrives, he is offered the option of

pairing with someone on the waiting list or being added to the list. Adjudication and

registration both require a mechanism for notifying the waiting clients when the process is

completed. This can be done using what is called client-pull.

Client Side Processing

Client-Pull

Client-pull is implemented using a feature of the HTML. The HTML META tag can

direct a document refresh by specifying a refresh interval and refresh document location.

<META HTTP-EQUIV=“Refresh” Content=‘5;URL=‘your-refresh.htm’>

This META tag is part of the current document. It tells the browser to load the

refresh document after the refresh interval, five seconds in the example above, expires.

The refresh document could be the same document as is currently loaded or any another

document on the WWW. This new document could contain a refresh directive also. In this

manner, a series of documents can be loaded in a timed sequence. This series might loop

back on itself, setting up an endless cycle. In the case of a series of length one, you update

the current document at a specified interval.

Why might one want to continually refresh the current document? Consider the case

where that document can be changed by a server-side program. The document, call it

11

result.htm, might initially contain a wait message for a client during adjudication or

registration. The document contains a refresh directive so it is reloaded periodically. When

adjudication or registration completes, the server-side program changes the contents of

result.htm to announce the real result. This new file would not contain a refresh directive,

thus ending the client-pull sequence once the real result is obtained. This technique can be

used to synchronize the activities of the multiple players in a war game.

To this point, three of the five war game functions have been addressed by client-

server model techniques: registration; adjudication; and move synchronization. The

remaining two, interaction and graphic display, are user-interface design issues. The

display is controlled by the browser on the user’s machine, referred to, up to this point, as

the client.

From the user’s point of view, the browser actually performs a server function.

Simply rendering the HTML document is stretching the concept of the browser as a

server, a bit. More credible as a server function is the manipulation of FORM elements

such as text input, radio button selections, and submission button clicks. With the advent

of client-side programming however, the browser becomes a true server for the user and

makes possible the design of custom user interfaces.

Client-side Programming

Client-side programming includes scripting, virtual machine programming, and direct

access programming. Scripting includes JavaScript, JScript and VBScript. Virtual

machine programming includes Java3, J++ and ActiveX. Direct access programming

includes plug-ins and helpers written for a specific platform to handle unique document

12

types. Examples of these include Macromedia’s Shockwave plug-in or Adobe’s Acrobat

Reader, available as either a plug-in or helper.

Up to this point, portability has not been an issue. All of the methods described up to

and including client-pull can be implemented with any client and server that is compliant

with the standards: HTML 3.2; CGI 1.1; and HTTP 1.0. Client-side programming

inextricably entwines us with the issue of a particular browser implemented on a particular

operating system. As evidenced by the proliferation of scripting languages, client-side

programming has no standards. While the browser manufacturers try to make their

products function identically across all platforms that they support, even this is not always

possible. Yet, the choice of browser, is really the first major choice when considering your

client-side options.

Many browsers are available. Some meet the basic requirement for user interaction

with the client, to be able to render HTML 3.2 documents. Only two major browsers,

Netscape and IE, offer suitable extensions to implement client-side processing.

Considering only simple HTML, the difference between the two browsers is minor4.

Newsgroup discussions suggest that IE is more stable with fewer bugs. When something

doesn’t appear to work as documented in IE, the problem is usually caused by a mistake in

the document file. The same is not true for Netscape, where many programmers are

reporting bugs. The major difference between the browsers is platform support.

Netscape tries to support all of the major platforms, UNIX, PC and Macintosh. Their

support tends to be more uniform across the platforms. Microsoft has abandoned the

UNIX world, and often lags in deploying new versions of their browser for the Macintosh.

Even within the PC market, the Windows 3.1 operating system gets second billing to

13

Windows 95 by Microsoft. Since the target platform for this project is a PC running

Windows 3.1 and IE, we will be limited to a subset of possible techniques.

Once the browser selection is made, several other decisions are fixed. Selecting a

browser specifies the scripting language, the programming language and the set of plug-

ins. Fortunately, each company has tried to copy the tools of the other, with Microsoft

having a few additional choices. JScript is nearly the same as JavaScript, and J++ is the

same as Java. The companies are even cooperating to some extent to allow plug-ins

written for one browser to work with the other. As the various client-side options are

discussed, the common ground between the browsers will be identified.

Client Side Scripts

The SCRIPT tag is a feature of the HTML 3.2 standard. It allows a document to

contain code that is interpreted by the browser itself. The code arrives in plain text in-line

with the rest of the HTML document. This differentiates the script from virtual machine

code which arrives in a binary format. Script code is easily viewed by the user. Scripts are

only allowed to affect the browser contents and not allowed access to any of the local

machine’s operating system functions. From a security perspective, scripts are fairly safe.

They are also fairly powerful.

 Script code is activated based on events that happen within the browser such as

button clicks, an object getting or losing focus, or even the loading or unloading of the

document that the script is contained in. What types of actions can scripts cause to

happen?

14

One of the most useful functions of scripts is to do "error checking" on FORMS input

elements. Data entered into a text input element can be checked for proper format and

value before it leaves the client. This saves effort within server-side CGI programs and the

Internet's round-trip delay to have the server respond to bad inputs. When the client-side

script detects an input error, it causes an error message to appear in a dialog box. A dialog

box is a separate window on most operating systems and scripting extends the idea to

allow programmers to open new windows over which they have full control.

These new windows can be used to provide instructions, descriptions or other

amplifying information. Instead of clicking a hyperlink and having to fetch an entirely new

document from the server, the button click can activate a script that opens a new window

with the script-supplied required information in it. This can greatly facilitate interface

design, especially when combined with other HTML features.

One of the HTML's features is the HIDDEN input type within a FORM. This input

type does not display and a FORM might only have these in it, thus, it would be invisible.

If the document containing a FORM is the output of a server-side CGI program, these

HIDDEN inputs can be initialized with customized data. Client-side scripts can access and

use the information in these HIDDEN inputs. Thus, a method for achieving client-local

data storage is possible. This method is even more lucrative when combined with another

HTML feature, frames.

Frames allow a single browser window to be partitioned to display multiple

documents. For game design, this allows a more sophisticated user interface and better

control over the screen layout. The top-level frame document, called the parent, specifies

the layout of the individual child frames and their initial document sources. See Figure 2

15

for a three frame example. The contents of each of the child frames can be changed

independently of the other. More importantly, any scripts located in the parent frame

document persist through changes in the children. Parent frame scripts can access data in

the child frame documents. This concept when combined with HIDDEN FORMS and

client-pull has some very powerful implications.

<HTML>
<script language=JavaScript>
// Persistent code goes here.

</script>
<HEAD>

<TITLE>Frame example</TITLE>
</HEAD>

<FRAMESET cols="70%,30%">
<FRAME NOSCROLL src="wargame.htm"

name="gameframe">
<FRAMESET rows="40%,60%">

<FRAME src="registration.htm" bgcolor=Blue
name="inputframe">

<FRAME src="bform.htm" name="commframe">
</FRAMESET>

</FRAMESET></HTML>

Figure 2. Syntax for the Frame Document

Consider the three frame example where a large display frame holds a graphical

presentation; a second frame has an array of controls such as buttons and selection lists;

and a third frame with HIDDEN FORM inputs that are refreshed by client-pull from a

document whose contents are updated by a server-side program. A user could manipulate

the controls in the second frame to activate client-side scripts that read data from the third

frame and make display changes in the first frame, the main display. With some limitations,

you can do exactly that.

16

In Netscape’s JavaScript, the client-side programmer can access just about any object

in any document in any frame, including images. This is not the case in Microsoft’s

JScript. JScript will not allow an image to be replaced or changed once the document is

rendered5. In Microsoft’s defense, JScript was deployed as a catch up measure when

Netscape fielded JavaScript. Microsoft did the best they could to maintain compatibility

with a competitor’s emerging standard. At the same time, Microsoft was developing their

own approach to client-side scripting.

A Note About ActiveX and VBScript

ActiveX and VBScript are distributed without cost by Microsoft. Their strengths are

in their flexibility and precise placement of graphic elements. Their weakness is in

portability. They are only available for Windows 95, NT and Macintosh. VBScript is

similar to JavaScript with all the object controls removed. Object control is what makes

JavaScript so powerful. VBScript is intended to be used together with ActiveX for

programming. Together they are very powerful, building on the syntax of Visual Basic.

Without ActiveX, VBScript is relatively weak. So what is ActiveX? To answer that

question, we look at virtual machine programming.

Client Side Programming Using Virtual Machines

A virtual machine is a software program that acts like a computer inside your

computer. Building a software computer inside your computer attacks one of the

fundamental problems of distributed network processing: portability. The virtual machine,

being a software application, is not platform independent. It is written for each particular

platform according to standards set down by the virtual machine designer. The code that

17

the virtual machine runs though, is platform independent. A software application

developer would only have to write code for the virtual machine, and it would run on any

hardware for which the virtual machine had been constructed. This is Sun Microsystems

ambition for Java.

ActiveX is less ambitious. It is not intended to be a full fledged virtual machine. Some

of the functions of a virtual machine are done with what Microsoft calls Controls. The

Controls have to be developed for each supported platform, generally using MicroSoft’s

Visual Basic6. The Web programmer uses VBScript to pass inputs to these Controls. This

hybrid of virtual machine programming and scripting is very powerful7. Market share may

eventually make up for its lack of portability. At present, the full virtual machine is more

mature.

Java and Microsoft’s J++ are by far the best environments for developing war games.

There are two reasons: the powerful programming capabilities, and the ability to precisely

place graphics. Unfortunately, neither runs under Windows 3.1, a project requirement.

Java virtual machines exist for Windows 95, Windows NT, Macintosh, and various UNIX

machines. There are other negative issues besides portability.

Virtual machines still represent a security risk. Security is critical in network

software, where that unexpected blinking of the hard drive activity light could be the

transmission of all your bank account and credit card numbers to some unknown location.

Sun Microsystems has tried to eliminate that concern by preventing any local storage

medium access. Even with that, the Air Force may prohibit by regulation the distribution

of Java based applications. The other concern is complexity. Virtual machine

programming, like Java, requires about the same programming skills as C++.

18

Direct Access Programming: Plug-Ins and Helpers

Short of using Java, two other possibilities exist: plug-ins and helpers. While these

two are about the same, they behave slightly differently. These two elements are used to

interpret special file types passed to the browser.

Helpers are applications that reside on the client computer and can be called by the

browser to render special files like sound, movies, or 3-D files. They execute

independently of the browser in their own window. An example would be Microsoft’s

PowerPoint Viewer. It would launch and display any PowerPoint slide shows that were

downloaded through the browser using the HTTP.

Plug-ins are applications that work with the browser to interpret special files within

the browser window. Almost all browsers render GIF and JPEG image files in-line with

the rest of the HTML document. The part of the browser code that allows this to happen

functions just like plug-in. Similarly, the Acrobat Reader plug-in can mix the proprietary

pdf file format in-line with the rest of an HTML document. This is accomplished using the

HTML tag, EMBED.

Because plug-ins are so closely integrated with the browser, application programming

interfaces (APIs) are almost a necessity for writing them. Borland C++ and Visual C++

both provide libraries to assist in their development. Templates are available for both

Netscape and Internet Explorer developers8. The process is not difficult for the beginning

C++ programmer (the only language option available). Plug-ins provide a good university

level solution where the number of operating systems can be limited and student

researchers provide a technical personnel pool for development. It is not a viable solution

for overworked content area experts with limited programming skill. Be prepared to write

19

separate software packages for every operating system and supporting every configuration

variation.

Plug-ins and helpers allow the complex graphics display routines to remain resident

on the client computer, while only small message traffic passes between client and server.

Application specific plug-ins are the basis for most commercial Internet games as DOOM

and PYST. They work by allowing a minimal amount information to pass over the

network such as a player’s position and orientation within the game environment. The

plug-in knows how to use this information to construct a textured 3-D world from the

player’s viewpoint complete with opponents in their proper positions.

One might consider using a commercial plug-in for war game development. There are

tool kits for writing binary files that are interpreted by a particular plug-in. The most

popular plug-in set is a commercial product called Shockwave, but a number of others

exist based on commercial draw packages, for example Autocad. Many like VTML,

include a three dimensional capability. The major disadvantage is that each requires a

costly development kit to write client files. Using plug-ins complicates access to most

CGI client server interaction. Consequently, the games must be written entirely in the

development kit, which raises synchronization problems. They do provide a commercial

quality solution for single player games.

Server Side Programming Environment

As the various client-side techniques were developed, the programming environments

for each were discussed. Let’s revisit server-side programming to discuss its programming

environment.

20

Server-side programs are activated by and return their results through the CGI.

Server-side programs can also create server local files since security is not as great an

issue. These files might be the targets of URLs within a client document or documents that

are refreshed using client-pull. One could even generate special files that would require

client plug-ins to handle if you had access to the proprietary file formats required. The GIF

image file format is well published and a set of C language libraries actually exist to aid in

creating and writing GIF files. The basic requirement for a server-side program is that it be

an executable program on the server. This gives great latitude in the selection of a

programming environment.

The programming language can range from formal compiled languages to operating

system level scripting languages. Formal languages include the likes of C, C++, Fortran, or

ADA. Shell scripting languages like the UNIX csh or Bourne shells or even DOS batch

files can be used as server-side programs. In between these extremes are interpreted

scripting languages like the Practical Extraction and Report Language (Perl) or awk. In

selecting an environment, the primary considerations should be portability, utility and

simplicity.

The ANSI-standard versions of C/C++ are probably the most portable with the Perl

being a close second. The arguments between advocates of the two camps take on the

fervor of religious fanaticism. The Perl excels in string manipulation tasks, a common

chore in generating HTML documents. The C/C++ camp enjoys a much better

programming environment with utilities like make files and revision control systems. The

Web community seems to favor the Perl, especially since its version 5.0 release which

21

takes it closer to being an object-oriented language. The major reason for Perl’s

ascendancy is that in many cases the developer does not own the server machine.

Perl has the feature of being interpreted instead of compiled. This is more acceptable

to system operators because it doesn’t require game authors to have access to the server’s

operating system. PERL scripts are also uploaded to the CGI directory or sub-directory

as text files, which makes checking their system interactions easier. Perl represents the

only choice for most people, as operating system shell accounts are generally not available

except in the educational environment. Internet service providers no longer provide shell

accounts because of the security risk.

If you own the server, a very reasonable choice is C++, or C. The next chapter will

discuss how to develop complex graphics using C and the gd libraries. The availability of

these libraries and the unsuitability of the other client-side graphics placement techniques

drove this project to adopt C/C++ as its primary server-side programming environment.

Table 1 shows the relationship between programming possibilities and several

estimates of merit9. Security considers the ease with which distributed programs could be

replaced with malicious programming. Complexity measures the relative level of technical

training required with ten equated to the level of competent but casual programmer. Zero

implies a professional programmer is required. Utility is a measure of the ability to

precisely place and display graphic elements, with 10 the highest. Portability is a measure

of what attention must be paid to what operating system and hardware is being used. For

the table, zero, means hardware differences affect the coding. Five implies that code must

be recompiled with only minor changes. A score of ten means that the code is

independent of machine.

22

Based on the evaluation of each entry of table 1, JavaScript or JScript was selected

for the client-side programming environment

Table 1. Comparison of Software Approaches

Security Ease of
Use

Utility Portable Notes

Assembly
language

10 1 1 0 Out of date

Borland
C++

10 5 10 10 Good

Visual C++ 4 8 10 10 Better

Java/J++ 8 5 10 5 No Win 3.1

ActiveX 8 5 10 8 No Win 3.1

Plug-ins 0 5 10 0 Great/but
complex

Helpers 0 5 10 0 Straight
forward with
C++

Java/JScript 10 10 8 9 Best

Tcl 10 12 5 2 For UNIX
only
Motif/Xwin

Python 10 8 5 10 Extension
Language
like Tcl,
might be
wave of the
future.

PERL 10 3 10 10 Interpreted

C shell 10 6 2 10 UNIX only

VBScript 10 4 3 5 No
UNIX/weak

The two are functionally equivalent except in the way they handle mistakes.

Incorrect syntax is very often ignored in one case but not on the other, making the

cross platform debugging difficult. C++ is selected for the server side environment.

23

This chapter has covered the basic techniques made available by the WWW’s client-

server model. The programming environments for both client-side and server-side

functions has been covered with an eye on portability, complexity, utility, and security.

The next chapter will cover how these techniques are deployed in the AFEX exercise.

Notes

1 http://www.afpc.af.mil/
2 These techniques are discussed at length in: The HTML Sourcebook : A Complete

Guide to HTML 3.0 by Graham, Ian S, Publisher: John Wiley & Sons 2nd Edition,
ISBN: 047114242 February 1996.

3 For an tutorial on Java see: A Brief Introduction to Java at
http://smoke.thepipe.com/java.html. by Eric Sorenson

4 Many of the differences are simply annoying. For example, IE and Netscape reverse
the order that the data is sent to the server.

5 This deficiency has apparently been fixed in the soon to be released IE 4.0.
6 It is not absolutely necessary to use Visual Basic, Visual C++ can be used as well,

but with much more difficulty.
7 To a much more limited extent, JavaScript can call Java applets. The MicroSoft

implementation of the paradigm is more elegant, purposeful, and powerful.
8 See: HTTP://home.netscape.com/eng/mozilla/3.0/handbook/plugins/index.html.
9 These figures of merit are estimates generated by the author based examples tested

and written over the course of this project.

24

Chapter 3

Implementing Game Functions

Deploying a war game, even one originally done on the computer, to the Internet

requires more than just language conversion, such as from BASIC to C++. It requires a

possibly full redesign of the interface, provisions for synchronization that were not

required before, schemes for graphics display on a broad range of platforms

simultaneously, and a plan for the distribution of processing among at least three

computers. As an example for illustration, the ACSC war game exercise AFEX was

selected. The conversion is discussed in terms of five basic functions that occur during the

game play.

The five basic functions required of Internet war games are: registration, interaction,

synchronization, adjudication and graphic display. Each requires one or more of the

techniques discussed in the previous chapter to implement. This chapter discusses the

particular techniques and combination of techniques used to deploy AFEX to the Internet.

Registration

Registration requires that each player (client) register with a central processor

(server) to establish the opponent pairings for the game. At the same time, the game state

is initialized. For AFEX, the game always begins the same and is completely symmetrical

25

for both players, like chess. Other games might require a randomization process to set, for

example, the initial forces and their positions. This initial environment is defined by data

structures and stored in files on the server that are keyed for the registered players. For

gaming, this is the electronic equivalent of a game board and pieces. Once the opponent

pairing occurs, the same process that communicates the game state after the adjudication

phase is used to transmit the initial state of the game to the players. The method for doing

the opponent pairing will be covered now, with the game state transmission function

coming later.

For the pairing of opponents, there are essentially two cases. You arrive at the game

either before or after your desired opponent. All entrants to the game then want to check

the list of those waiting. If they arrived after the opponent, the opponent will be on the

waiting list, in which case, pair with them. Otherwise, join the waiting list. This is

implemented with a CGI call that generates FORMs on-the-fly.

The URL for the registration is a CGI call, register.cgi. The server maintains the

waiting list in a server-local file. Register.cgi returns an HTML page with two FORMs on

it. The first FORM has a SELECT option list that includes every name on the waiting list.

It is a single select list. This FORM’s SUBMIT button calls a client-side JavaScript

function that makes sure an opponent has been selected from the list. If so, that selection

is forwarded to another server-side CGI function, make_pairing.cgi, to make the pairing.

The other FORM returned by register.cgi only has a submit button on it labeled. Add to

Waiting List. This button’s ACTION is a CGI function, add_to_wait.cgi, that appends the

name of the new entrant to the waiting list. Both of the ACTION CGI functions use the

REMOTE_USER environment variable to identify the new entrant to the game. This

26

prevents imposters, to some extent. Of interest now is what the ACTION CGIs do and

what their output is to the user.

The add_to_wait.cgi appends the new entrant’s name to the waiting list, assigns a

game number label to this player, and returns a copy of the waiting list. The game number

label will be used to name the files that contain the player’s game state data structures.

This file doesn’t exist yet, because opponent pairing has not occurred. The copy of the

waiting list is returned by sending a location header that references the CGI program,

show_list.cgi, with the game number label passed in the QUERY_STRING environment

variable. The show_list.cgi program first checks for the existence of the game number

data structure file. If it exists, pairing has occurred. Show_list.cgi removes the waiting

player’s name from the waiting list file. A page is returned announcing this pairing, with a

link to retrieve the game state, which at this time is the game’s initial state. If the game

number labeled data structure file does not exist, a page with the waiting list is returned.

This page has a META refresh directive to show_list.cgi so it updates itself, executing the

check for pairing first. One might wonder why the waiting list is returned as the wait

message.

The reason for returning a copy of the waiting list is to break a possible race

condition. Suppose both opponents arrive at about the same time, calling register.cgi

before either of them are placed on the waiting list. Neither sees the other in the option

SELECT list and both press the Add to Waiting List button. Both get added to the list,

but both will see each other on the list that is eventually returned by show_list.cgi. A link

to register.cgi is provided on the page returned by show_list.cgi with the waiting list on it.

27

The trick now is to avoid a race condition when both try to pair with each other using the

make_pairing.cgi.

How does make_pairing.cgi work? It first checks for the existence of the selected

opponent on the list. If the opponent is there, the data structure file is created using the

opponent’s game number label. The opponent will remove himself from the list when his

show_list.cgi next executes. Check to make sure you are not on the waiting list. If you

are, remove yourself. What if the opponent isn’t there? The reason would be that he paired

with you. Your game number labeled data structure file will exist. Remove your name

from the list and set up to retrieve the game initial state. The reason this works is because

you never remove anyone from the waiting list except yourself.

The registration process uses several methods previously discussed. FORMs and the

CGI are the basic mechanism. It is supplemented by server-side storage of the waiting list

and game data structure files. Client-pull keeps the waiting client advised of the

registration status. The race condition is really a synchronization issue that we hadn’t

discussed before. It is handled by being a bit clever in triggering events by the presence or

absence of a given piece of data. This piece of data though must reside on the server, as it

is the only common ground tread by all of the clients.

Client Interaction

The success of the game is dependent upon three things: an intuitive interface, a

simple interaction module, and accurate graphical presentation of the game state.

Synchronization allows these three functions to work together.

28

The basic interface is the frames interface described in the previous chapter. AFEX

uses three frames: a display panel; control panel; and a communications/status panel. In

this section, the interaction function, the way the users make their inputs, is described.

The AFEX client interaction is based upon a reasonably complex set of FORM inputs.

The basic move in AFEX is the selection of missions and targets for each of 96 aircraft.

This requires over 150 pieces of information. JavaScript functions in the parent frame

document are used to generate the form in the child display frame when the user decides

to generate the air tasking order (ATO). The ATO function is selected by clicking an ATO

button in the control panel frame. When the form is completed by the player, the Launch

button is pressed which submits the user input to the server. The next step is to

synchronize moves between players.

Synchronization

A difficult part of the Internet game design is implementing synchronization between

players, and triggering the adjudication phase. The communication frame is the key to

synchronization. The communication window keeps the players informed of the game

status by displaying messages from the server.

A typical method for finding out the status of another client would be to use an

Internet socket request. While socket programming is not especially difficult, by using a

combination of tricks it can be avoided1. The approach taken here is to use client-pull to

synchronize on the server as necessary.

The procedure is very similar to the registration process. When the Launch button

submits our move, the server-side response is returned to the communications frame. Our

29

move submission will either be the last within a game round or not. If it’s not last, a wait

message is returned that has a META refresh tag in it. This starts the client pull in the

communications frame. When the last client submits their move in the game turn,

adjudication is triggered. The output of adjudication is to change the document that all of

the clients communication frames are refreshing on to announce the availability of

adjudication results. This announcement document has no refresh directive, so the client-

pulls from the communication frames end. In AFEX this requires two separate executables

on the server. The C program, cgi-afex, is used to process user form inputs and store the

information in a server local file for use by the adjudication routine. The cgi-write program

is used to maintain the “wait” document that is pulled by the clients.

Once all of the client moves have been accepted and stored, the adjudication

algorithm is called.

Adjudication

Adjudication takes place as a simple evaluation of the environment that brings about

changes in the status of the pieces and board, e.g., database. Adjudication in this exercise

will be used to determine the effects of the strike packages on the targets.

The adjudication engine must manipulate the data base, which is composed of two

lists: a 13 x 96 element array for aircraft and a 22 x 13 element array for targets. When

requested by a client, the information is sent to the communication frame and stored in

HIDDEN FORM elements. The approach taken here is to store the results on the server

and instruct the user, inside the communication frame, to request an intelligence report

document.

30

 Adjudication and display in C++ are discussed by Gradecki2. While we will use C++,

it will only be used to manipulate text files and generate graphics files which can be

interpreted by the browser.

Graphic Display

Figure 3. Intelligence Report

The intelligence report is a graphical display using custom GIF files and tables. When

the communication window informs the player that the round is complete and the next

round is starting, it activates a button allowing a request for the intelligence report. The

graphic display file is written by the adjudication engine which also stores the game state

in binary form on the server. The graphic file is created using the gd libraries to put

dynamic information on a static map.

When developing computer games, embedding computer graphics and multimedia is

possible using several approaches. The basic approach is to develop each piece as a

separate file and link the file to an HTML document using an <A> tag. The browser has

the responsibility to interpret the special file types internally with plug-ins3 or externally

31

using helper applications. Multimedia includes graphics, sound, animation, video clips, and

special file types developed by the game author. The EMBED container4 provides direct

access to the plug-in and helper applications.

The second approach, which uses elements of the first, is to actually write the

graphics files on the server using a programming language and a graphics library. The first

view is to look at multimedia as a sort of clip-art, the second is to actually generate the

multimedia on the server. The second approach is what is done in AFEX.

Using CGI programs, a GIF file can be created on demand. Most browsers provide

for display of GIF, and JPEG files in the browser, so this is a very portable approach. The

CGI program writes the GIF image to a file accessible by the HTTP server. The image is

included in the HTML document by using the container. Except for a

library of graphics tools called the gd libraries, this might be difficult for the casual

programmer.

The gd libraries provide all the normal functions such as, open image, circle, line,

square, and paste from file, necessary to create an image in real time. It is not intended to

replace a drawing program, but is good for creating a specific game board display based

on client inputs or the results of the adjudication engine. In AFEX, the primary static

display, the map, is displayed using the BACKGROUND attribute of the BODY

container. The dynamic information is put into a transparent GIF that overlays the

background. The results can look very professional.

The generation and transmission of a GIF is not an optimal solution in terms of

network bandwidth. It is the solution forced upon us by the compromises made in

32

choosing the development environments. The next section examines the distribution of

processing between the client and server in AFEX.

Distribution of AFEX Processes

Based on the requirements derived from the discussion above, the game design

requires the following sub-modules. The basic game script is in the form of a Uniform

Resource Locator (URL) file on the server, and additional pages as needed to provide user

instruction in the form of an on-line player manual. Three executables are needed on the

server to execute the game. The form processor (cgi-afex in Table 2) collects the user

input and stores it in the data directory.

The synchronization program, (in the table, gamewriter.cgi), checks for user input

and provides the appropriate documents back to the client at the right time. The

adjudication program, called by gamewriter.cgi, provides as its output a new game state in

the form of a data file and an image file. The registration processor is actually included in

the cgi-afex.c as a set of subroutines. This is the user input processor, which outputs the

player database needed to validate moves.

Table 2. Distribution of Processes

Module Location Language Function
GameScript
AFEX.html

Server Document/
Download to Client

JavaScript Download
Client Input handler

Information Pages
Apage#.htm

Server Document/
Download to Client

HTML Download
Instructions

cgi-afex.c Server CGI C++ Process user input
writegame.cgi Server CGI C++ Synchronization and call

adjudication
Adjudication.exe Server EXE

Locally called
and executed.

C++ Execute Adjudication
on Sync

33

Table 2 continued
G#.AFEX.game Server Data Text/HTML Store Game Data
G#.AFEX.register Server Data Text/HTML Store Player ID
Board.gif Server Data

Download to Client
GD lib using
C++

Graphical translation
of the game state.

The game was implemented on a local area network using a Silicon Graphics

computer with a Netscape HTTP server, with a number of Windows 3.1 Pentium

computers using Internet Explorer acting as clients. The next chapter will discuss the

conclusions and recommendations for similar projects.

Notes

1 See Copes’ discussion for the hardware level of Internet programming. A simpler
approach is developed by Marc Loy, in Java Programming for the Internet, Prentice Hall,
ISBN: 0132707780 1996. Unfortunately it not appropriate for this effort as Windows 3.1
is the standard, which eliminates Java

2 His approach is excellent for development of games which interact with the client
operating system by means of plug-ins or helpers but violates the requirement for
simplicity, portability, and security. See Netwarriors in C++ : Programming Multiplayer
for Windows, Joe Gradecki, John Wiley & Sons, ISBN: 0471113379, Published:
February 1996

3 Browsers typically come built in with several special file types for sound, graphics
and multimedia. Specialized file types can be embeded in the document using plug-in
components. These are relatively easy to write under C++, as the netscape window is a
visible canvas object, using the netscape developers kit. For a full treatment see: The
Netscape Plug-Ins Developer’s Kit, Michael Morgan, Que Publishing Company. 1996.

4 For a quick introduction to HTML containers, the Yahoo Search Engine provides
many standard references at :http://www.yahoo.com/Computers_and_Internet/Internet/-
World_Wide_Web/Information_and_Documentation/Beginner_s_Guides/. I recommend
the NCSA guide http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html

34

Chapter 4

Conclusions

The proceeding chapters illustrate methods to implement the five software functions

of war game training exercises. These are: registration, interaction, synchronization,

adjudication and graphic display. The general approach and the analysis of specific

techniques was explained in the chapters above. The implementation details are contained

in the Software Appendix. The Software Appendix contains specific examples of each of

the techniques described above. In particular, examine the source code for the Net Chess

game and the Air Force Employment Exercise game. The concepts presented are intended

for the casual programmer and subject area expert as guidance in the development of

educational exercises that require student interaction as part of the learning process.

What was not known at the start of the project was if the project was even feasible

with the limited resources available. By implementing this design method, and testing it

against the Net Chess exercise and the AFEX game, it was demonstrated that relatively

sophisticated games could be constructed with the available tools.

Recommendations.

While the information presented here should serve as a guide to multi-player game

development, the speed with which the environment is changing should be taken into

35

account. For this project JavaScript was chosen for the client, and C++ for the server.

The future environment may look completely different.

 In the next few years, caution suggests attention be paid to server-side developments.

Already projects are in the works to develop script programming for the Server.

NetscapeOne looks like a means to write both server and client software in JavaScript.

Still, with the strength of Microsoft, who is offering an essentially free product, Netscape

could easily disappear. Scripting languages are improving at a rapid rate. Many of the

limitations encountered in this project will probably be eliminated in future releases. The

proposed HTML++ container1 <FIG> will allow overlaid and offset image files. This,

combined with the Netscape container, should provide everything a developer

might want in the way of precise placement of objects. By then, the virtual machine will

probably have recovered from the security problems it suffers from now. Within a few

years, fully interruptible operating systems like Windows 95 and Windows NT will have

replaced Windows 3.1 and the client-server model will be replaced by a client peer-to-peer

model. These developments could lead to plug-ins written in script languages and the

methods of this study will be overcome by technical development.

Notes

1 The difficulty with such a rapidly developing technology is that the technical
documentation must be out in front of the actual technical developments to ensure that the
documents are not out of date before being published. Althought several HTML++
containers are documented as fact in several books, they in fact do not exist and may
never exist. The reference for the FIG container was taken from: Teach Yourself Web
Publishing with HTML 3.0, Laura Lemay, Sams Publishing, 1996.

36

Bibliography

Air Force Publication, Global Engagement: A Vision for the 21st Century Air Force.
Cope, Kris A. Internet Programming, Jamsa Press by,. ISBN: 1884133126, April 1995.
Graham, Ian S. The HTML Sourcebook : A Complete Guide to HTML 3.0, Publisher:

John Wiley & Sons 2nd Edition, ISBN: 047114242 February 1996.
Morgan, Michael. The Netscape Plug-Ins Developer’s Kit, Que Publishing Company.

1996.
Lemay, Laura. Teach Yourself Web Publishing with HTML 3.0, Laura Lemay, Sams

Publishing, 1996
Java Programming for the Internet, Prentice Hall, ISBN: 0132707780 1996
Netwarriors in C++ : Programming Multiplayer for Windows, Joe Gradecki, John Wiley

& Sons, ISBN: 0471113379, Published: February 1996

DISTRIBUTION A:

Approved for public release; distribution is unlimited.

Air Command and Staff College
Maxwell AFB, Al 36112

	Title Page
	Disclaimer
	Contents
	Illustrations
	Tables
	Preface
	Abstract
	Chapter 1: Introduction
	Approach
	Overview
	Notes

	Chapter 2: Methods and Tools
	What is the Client-Server Model?
	Common Gateway Interface (CGI)
	Client Side Procesing
	Client-Pull

	Client-side Programming
	Client Side Scripts
	A Note About ActiveX and VBScript
	Client Side Programming Using Virtual Machines
	Direct Access Programming: Plug-Ins and Helpers
	Server Side Programming Environment
	Notes

	Chapter 3: Implementing Game Functions
	Registration
	Client Interaction
	Synchronization
	Adjudication
	Graphic Display
	Distribution of AFEX Processes
	Notes

	Chapter 4: Conclusions
	Recommendations.
	Notes

	Bibliography

